Modeling the Jovian subnebula: I - Thermodynamical conditions and migration of proto-satellites

نویسندگان

  • Yann Alibert
  • Olivier Mousis
  • Willy Benz
چکیده

We have developed an evolutionary turbulent model of the Jovian subnebula consistent with the extended core accretion formation models of Jupiter described by Alibert et al. (2005b) and derived from Alibert et al. (2004,2005a). This model takes into account the vertical structure of the subnebula, as well as the evolution of the surface density as given by an α-disk model and is used to calculate the thermodynamical conditions in the subdisk, for different values of the viscosity parameter. We show that the Jovian subnebula evolves in two different phases during its lifetime. In the first phase, the subnebula is fed through its outer edge by the solar nebula as long as it has not been dissipated. In the second phase, the solar nebula has disappeared and the Jovian subdisk expands and gradually clears with time as Jupiter accretes the remaining material. We also demonstrate that early generations of satellites formed during the beginning of the first phase of the subnebula cannot survive in this environment and fall onto the proto-Jupiter. As a result, these bodies may contribute to the enrichment of Jupiter in heavy elements. Moreover, migration calculations in the Jovian subnebula allow us to follow the evolution of the ices/rocks ratios in the proto-satellites as a function of their migration pathways. By a tempting to reproduce the distance distribution of the Galilean satellites, as well as their ices/rocks ratios, we obtain some constraints on the viscosity parameter of the Jovian subnebula.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the Jovian subnebula: II - Composition of regular satellites ices

We use the evolutionary turbulent model of Jupiter’s subnebula described by Alibert et al. (2005a) to constrain the composition of ices incorporated in its regular icy satellites. We consider CO2, CO, CH4, N2, NH3, H2S, Ar, Kr, and Xe as the major volatile species existing in the gas-phase of the solar nebula. All these volatile species, except CO2 which crystallized as a pure condensate, are a...

متن کامل

Constraints from deuterium on the formation of icy bodies in the Jovian system and beyond

We consider the role of deuterium as a potential marker of location and ambient conditions during the formation of small bodies in our Solar system. We concentrate in particular on the formation of the regular icy satellites of Jupiter and the other giant planets, but include a discussion of the implications for the Trojan asteroids and the irregular satellites. We examine in detail the formati...

متن کامل

FORMATION OF THE GALILEAN SATELLITES: CONDITIONS OF ACCRETION RobinM. Canup and William R.Ward

We examine formation conditions for the Galilean satellites in the context of models of late-stage giant planet accretion and satellite-disk interactions. We first reevaluate the current standard, in which the satellites form from a ‘‘minimum mass subnebula ’’ disk, obtained by augmenting the mass of the current satellites to solar abundance and resulting in a disk mass containing about 2% of J...

متن کامل

Formation of Jupiter and Conditions for Accretion of the Galilean Satellites

We present an overview of the formation of Jupiter and its associated circumplanetary disk. Jupiter forms via a combination of planetesimal accretion and gravitational accumulation of gas from the surrounding solar nebula. The formation of the circumjovian gaseous disk, or subnebula, straddles the transitional stage between runaway gas accretion and Jupiter’s eventual isolation from the solar d...

متن کامل

Do Proto-Jovian Planets Drive Outflows?

We discuss the possibility that gaseous giant planets drive strong outflows during early phases of their formation. We consider the range of parameters appropriate for magneto-centrifugally driven stellar and disk outflow models and find that if the proto-Jovian planet or accretion disk had a magnetic field of ∼> 10 Gauss and moderate mass inflow accretion rates through the disk of less than ∼ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005